

Circular raw materials für die Feuerfest- und Keramikindustrie

Inhalt

Über MIRECO	4
Rohstoffe für die Feuerfest- und Keramikindustrie	5
CERO WASTE-Konzept	6
Übersicht Rohstoffe	8
Basische Rohstoffe	10
Nichtbasische Rohstoffe	14
Kundennutzen	19

Über MIRECO

MIRECO ist die gemeinsame Marke von RHI Magnesita und der Horn & Co. Group. Mit unserem geballten Fachwissen, unserer Führungsrolle am Markt und unserer über 100-jährigen Geschichte im Bereich Feuerfest haben wir uns ein Ziel gesetzt: Die Industrien in Europa zu dekarbonisieren. Wie? Mit Recycling und intelligenten CERO WASTE-Konzepten für die Feuerfestindustrie.

Wir sind Europas führende Plattform für alle Player in der Feuerfestindustrie, die aktiv Umweltschutz durch Recycling betreiben. Gemeinsam entwickeln wir Lösungen, die hohe Qualität und Leistung bieten sowie gleichzeitig CO_2 -Emissionen einsparen. Schließen Sie sich unserer Mission an, die Kreislaufwirtschaft in der europäischen Feuerfestindustrie zu stärken, und tragen Sie so zur nachhaltigen Renaissance der Branche bei.

Unser Claim

Das Recycling ist heute wichtiger denn je. Alle Industriezweige tragen die Verantwortung für einen sparsamen Umgang mit Rohstoffen. Seit 1956 ist es unsere Aufgabe, den Lebenszyklus von Rohstoffen zu verbessern. Für uns ist Recycling ein Teil unserer DNA.

Dank unserer langjährigen Erfahrung, unserer hervorragend ausgebildeten Mitarbeiter und unserer Leidenschaft für das, was wir tun, sind wir der führende Spezialist für Recyclinglösungen für feuerfeste Materialien. Um eine zirkuläre Lieferkette zu erreichen, ist es notwendig, Produkte aus Sekundärrohstoffen zu verwenden.

Wir bieten unseren Kunden die gesamte Palette an Dienstleistungen und Produkten, die für einen geschlossenen Rohstoffkreislauf notwendig sind. Alle Recyclingkonzepte sind individuell auf unsere Kunden zugeschnitten und basieren auf unserem innovativen CERO WASTE-Konzept.

Rohstoffe für die Feuerfest- und Keramikindustrie

Ein modernes Rohstoffbeschaffungsmanagement in der Feuerfest- und Keramikindustrie hat die Aufgabe, eine strategische und nachhaltige Versorgungskette zu gestalten, die Versorgungssicherheit bietet.

Um diese Anforderungen heute erfüllen zu können, muss ergänzend zu den Quellen an Primärrohstoffen ein Teil der Versorgungsbedarfe mit Sekundärrohstoffen gedeckt werden. Ausschlaggebend für die gute Performance eines Rohstoffs im Produkt ist die an den Anwendungsprozess ideal angepasste Qualität.

Sie erhalten bei uns Rohstoffe, die nach unserem CERO (Continuous Economic Recycling Optimization) WASTE-Konzept nach qualitativ höchsten Standards der Feuerfestaufbereitung gewonnen wurden.

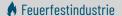
Dadurch erhalten Sie einen hochwertigen Sekundärrohstoff mit Abfallende-Status und definierten Rohstoffeigenschaften. Individuelle Wünsche bezüglich der technischen Spezifikation oder des Kornaufbaus können fallweise bei der Herstellung berücksichtigt werden.

Gerne ist unser Vertriebsteam, das über einen breitgefächerten Erfahrungsschatz verfügt, Ihnen bei der Auswahl des Rohstoffs, der zu Ihren Anforderungen passt, behilflich.

CERO WASTE-Konzept

Mit dem CERO WASTE-Konzept versetzen wir Industrieunternehmen in die Lage, das Prinzip der geschlossenen Kreislaufwirtschaft zu einem zentralen unternehmerischen Erfolgsfaktor zu machen.

Ihr genutzter Stein wird zu dem was er ist: nämlich zu einer wertvollen Ressource und nachhaltigen Basis für eine neue Art der Rohstoffbeschaffung. Mit dem intelligenten Umgang der wertvollen ressource Feuerfestmaterial schaffen wir eine Versorgungssicherheit und drosseln gleichzeitig die Treibhausgase.


Zusätzlich schafft unser CERO WASTE-Konzept auch alle Voraussetzungen zur Erfüllung der Europäischen Abfallrahmenrichtlinie und gewährleistet Prozess- und Rechtssicherheit in puncto Analytik, Transport, Dokumentation und Entsorgung von Abfällen.

Gießereien

Glasindustrie

ENTFALLSTELLEN-MANAGEMENT

Materialstromerfassung /
-optimierung
Projektierung von Ausbrüchen
Analytik

MATERIAL-SORTIERUNG

Sortenreine Trennung Qualitätssicherung Logistik

WIEDERVERWERTUNG

Wertschöpfung Aufbereitung Anwendung

ENTSORGUNG

Deponieklassenbestimmung Transport Dokumentation

OR-Code scannen und mehr erfahren.

Übersicht Rohstoffe

Basische Rohstoffe

Produkt	Mg0	Al_2O_3	SiO ₂	Ca0	Fe ₂ 0 ₃	С	Cr ₂ O ₃
Mag-Carbon R 94A1	94,0 %	1,0 %	1,0 %	1,5 %	1,0 %	10,0 %	
Mag-Carbon R 93A1,5	93,0 %	1,5 %	1,0 %	1,5 %	0,7 %	10,0 %	-
Mag-Carbon R 92A3	92,0 %	3,0 %	1,3 %	2,0 %	1,0 %	10,0 %	-
Mag-Carbon R 92A4,5 AOX	92,0 %	4,0 %	0,9 %	1,6 %	0,6 %	8,5 %	-
Magnesia R 90	90,0 %	1,5 %	3,0 %	2,0 %	2,5 %	-	-
Magnesia R 86F7	87,0 %	1,5 %	2,5 %	3,0 %	5,5 %	-	_
Magnesia R 95	95,0 %	0,6 %	1,0 %	1,5 %	0,8 %	-	_
Magnesia-Chrom R 59Cr18	59,0 %	6,0 %	3,0 %	2,0 %	12,0 %	-	18,0 %
Dolomit R	55,0 %	1,0 %	2,0 %	35,0 %	2,0 %	-	-
Magnesia-Forsterit R 68	68,0 %	2,0 %	15,0 %	2,5 %	9,0 %	-	2,0 %

Nichtbasische Rohstoffe

Produkt	Mg0	Al_2O_3	SiO ₂	Ca0	$Fe_2^0_3$	C	TiO ₂	ZrO ₂	Na_2^0	SiC
Alumina 95	1,8 %	95,0 %	0,5 %	1,5 %	0,2 %	-	-	-	-	-
Bauxit R	1,0 %	79,0 %	14,0 %	0,5 %	1,5 %	-	2,5 %	-	-	-
Andalusit R 59	0,5 %	60,0 %	35,0 %	0,3 %	3,0 %	-	0,5 %	-	-	-
Schamotte R 40	-	42,0 %	50,0 %	-	1,7 %	-	1,8 %	-	-	-
Andalusit R 61	0,6 %	61,0 %	35,0 %	0,3 %	1,3 %	-	0,6 %	-	-	-
Alu-Carbon R 82Z6	1,7 %	82,0 %	7,5 %	0,6 %	0,4 %	5,0 %	-	5,5 %	-	-
Alu-Carbon R 77	1,8 %	77,0 %	17,0 %	0,5 %	1,0 %	10,0 %	-	-	-	4,0 %
AMC R	10,5 %	83,5 %	2,0 %	-	1,0 %	8,0 %	1,5 %	-	-	-
ASC R 68	1,0 %	68,0 %	12,0 %	3,0 %	1,0 %	2,0 %	1,5 %	-	-	10,0 %
AZS R Z35 RG	-	48,0 %	14,0 %	-	0,2 %	-	-	35,0 %	-	-
Kohlenstoff R	-	-	-	-	-	85,0 %	-	-	-	-
AZS R Z30N4	0,3 %	50,0 %	14,0 %	-	-	-	-	30,0 %	4,0 %	-

Basische Rohstoffe

Mag-Carbon R 94A1

Rohstoffbasis

Magnesia-Kohlenstoff

Herkunft

Stahlindustrie

Anwendungsbeispiele

Feuerfester Rohstoff

Mg0	Ca0	Fe ₂ O ₃	Al_2O_3	SiO ₂	С
94,0 %	1,5 %	1,0 %	1,0 %	1,0 %	10,0 %

Mag-Carbon R 93A1,5

Rohstoffbasis

Magnesia-Kohlenstoff

Herkunft

Stahlindustrie

Anwendungsbeispiele

Feuerfester Rohstoff

Mg0	CaO	Fe ₂ O ₃	Al_2O_3	SiO ₂	С
93,0 %	1,5 %	0,7 %	1,5 %	1,0 %	10,0 %

Mag-Carbon R 92A3

Rohstoffbasis

Magnesia-Kohlenstoff

Herkunft

Stahlindustrie

Anwendungsbeispiele

Feuerfester Rohstoff

Mg0	Ca0	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂	С
92,0 %	2,0 %	1,0 %	3,0 %	1,3 %	10,0 %

Mag-Carbon R 92A4,5 AOX

Rohstoffbasis

Magnesia-Kohlenstoff

Herkunft

Stahlindustrie

Anwendungsbeispiele

Mg0	Ca0	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂	С
92,0 %	1,6 %	0,6 %	4,0 %	0,9 %	8,5 %

Magnesia R 90

Rohstoffbasis

Magnesia

Herkunft

Stahl-/Glas-/Zementindustrie

Feuerfester Rohstoff

Magnesia R 86F7

Rohstoffbasis

Sortierte Magnesia-Steine

Herkunft

Stahlindustrie

Anwendungsbeispiele

Feuerfester Rohstoff, metallurgischer Zuschlagstoff

Mg0	CaO	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂
87,0 %	3,0 %	5,5 %	1,5 %	2,5 %

Magnesia R 95

Rohstoffbasis

Magnesia

Herkunft

Stahlindustrie

Anwendungsbeispiele

Mg0	Ca0	Al_2O_3	SiO ₂	Fe ₂ O ₃
95,0 %	1,5 %	0,6 %	1,0 %	0,8 %

Magnesia-Chrom R 59Cr18

Rohstoffbasis

Regenerat aus Magnesia-Chrom-Steinen

Herkunft

Stahl-, Zement-, NE-Metallindustrie

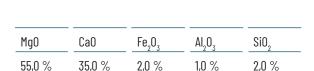
Anwendungsbeispiele

Feuerfester Rohstoff

Mg0	Ca0	Fe ₂ O ₃	Al_2O_3	SiO ₂	Cr ₂ O ₃
59,0 %	2,0 %	12,0 %	6,0 %	3,0 %	18,0 %

Dolomit R

Rohstoffbasis


Sortierte, gebrannte Dolomit-Steine

Herkunft

Stahlindustrie

Feuerfester Rohstoff

Magnesia-Forsterit R 68

Rohstoffbasis

Magnesia- und Forsterit-Steine

Herkunft

Wärmeöfen

Anwendungsbeispiele

Mg0	Ca0	Fe ₂ O ₃	Al_2O_3	SiO ₂	Cr ₂ O ₃	Na ₂ 0+K ₂ 0
68,0 %	2,5 %	9,0 %	2,0 %	15,0 %	2,0 %	0,5 %

Nichtbasische Rohstoffe

Alumina R 95

Rohstoffbasis

Alumina

Herkunft

Stahlindustrie

Feuerfester Rohstoff

Al_2O_3	SiO ₂	CaO	Fe ₂ O ₃	Mg0
95,0 %	0,5 %	1,5 %	0,2 %	1,8 %

Bauxit R

Rohstoffbasis

Sortierte und aufbereitete Bauxitsteine

Herkunft

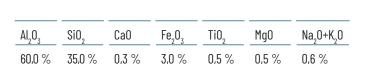
Stahlindustrie

Anwendungsbeispiele

Al_2O_3	SiO ₂	CaO	Fe ₂ O ₃	TiO ₂	Mg0	Na ₂ 0+K ₂ 0
79,0 %	14,0 %	0,5 %	1,5 %	2,5 %	1,0 %	0,4 %

Andalusit R 59

Rohstoffbasis


Andalusit

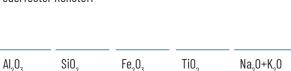
Herkunft

Stahlindustrie

Feuerfester Rohstoff

Sortierte Schamotte-Steine

Herkunft


Sonstige

42,0 %

Anwendungsbeispiele

50,0 %

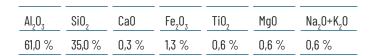
Feuerfester Rohstoff

1,8 %

1,2 %

1,7 %

Andalusit R 61


Rohstoffbasis

Sortierte Andalusit-Steine

Herkunft

Stahlindustrie

Anwendungsbeispiele

Alu-Carbon R 82Z6

Rohstoffbasis

Feuerfestes Regenerat aus zirkonhaltigen Schieberplatten

Herkunft

Stahlindustrie

Anwendungsbeispiele

Feuerfester Rohstoff, Sekundärmetallurgie

Al_2O_3	SiO ₂	Ca0	Fe ₂ O ₃	Mg0	С	ZrO ₂
82,0 %	7,5 %	0,6 %	0,4 %	1,7 %	5,0 %	5,5 %

Alu-Carbon R 77

Rohstoffbasis

Sortierte Alu-Carbon-Steine

Herkunft

Stahlindustrie

Anwendungsbeispiele

Feuerfester Rohstoff

Al_2O_3	SiO ₂	Ca0	$Fe_2^0_3$	Mg0	SiC	С
77,0 %	17,0 %	0,5 %	1,0 %	1,8 %	4,0 %	10,0 %

AMC R

Rohstoffbasis

Alumina-Magnesia-Kohlenstoff

Stahlindustrie

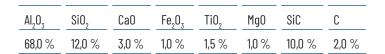
Anwendungsbeispiele

Feuerfester Rohstoff

Al_2O_3	SiO ₂	Fe ₂ O ₃	TiO ₂	Mg0	С
83,5 %	2,0 %	1,0 %	1,5 %	10,5 %	8,0 %

ASC R 68

Rohstoffbasis


SiC-haltige Hochtonerdebetone

Herkunft

Stahlindustrie

Feuerfester Rohstoff, Sekundärmetallurgie

AZS R Z35 RG

Rohstoffbasis

Alumina-Zirkon Steine

Herkunft

Glasindustrie

Anwendungsbeispiele

Feuerfester Rohstoff

Al_2O_3	SiO ₂	Fe ₂ O ₃	ZrO ₂	Na ₂ 0+K ₂ 0
48,0 %	14,0 %	0,2 %	35,0 %	2,0 %

Kohlenstoff R

Rohstoffbasis

Kohlenstoff-Steine

Herkunft

Sonstige

Aufkohlungsmittel, Stichlochmassen

Kohlenstoffgehalt

85,0 %

AZS R Z30N4

Rohstoffbasis

Alumina-Zirkon

Herkunft

Glasindustrie

Anwendungsbeispiele

Al_2O_3	SiO ₂	ZrO ₂	Mg0	Na ₂ 0
50,0 %	14,0 %	30,0 %	0,3 %	4,0 %

Kundennutzen

