

Circular raw materials for the iron and steel industry

www.mireco.com

The key force in closing the cycle

Content

About MIRECO	4
Circular raw materials for the iron and steel industry	5
CERO WASTE-Concept	6
Basic raw materials	8
Non-basic raw materials	10
Other raw materials	12
Customer Benefits	15

About MIRECO

MIRECO is the result of RHI Magnesita and Horn & Co. Group joining forces. With our combined expertise, leadership and over 100 years of refractory history, we are able to tackle major challenges of our society and industry such as climate change and resource conservation.

Together with and for our customers we design circular solutions that provide high quality and performance, while saving CO₂ emissions. Join our mission of strengthening the circular economy in European refractories and contribute to transforming the industry.

Our Claim

Today, recycling is more important than ever. All industries bear the responsibility to use raw materials sparingly. Since 1956 our mission is to improve the life cycle of circular raw materials. For us, reycling is part of our DNA.

Thanks to our many years of experience, exceptionally skilled personnel and passion for what we do, we are the leading specialist for refractory recycling solutions.

To achieve a circular supply chain, it is necessary to use products made out of circular raw materials. We offer our customers the full range of services and products necessary to accomplish a closed raw material recycling cycle. All recycling concepts are individually tailored to our customers and based on our innovative CERO WASTE-Concept.

Circular raw materials for the iron and steel industry

Carefully prepared, used refractory materials, either individually or in combination with commercially available primary raw materials, form the basis for a wide range of circular raw material substitutes for metallurgical purposes: slag formation, slag fluxing, influencing the slag composition and thermal covering agents. Circular raw material concepts that match the process in terms of quality, availability and environmental compatibility are developed in close cooperation with you the customer. We provide you with circular raw materials that have been obtained in accordance with our CERO (Continuous Economic Recycling Optimization) WASTE-Concept in accordance with the highest quality standards of refractory processing.

CERO WASTE-Concept

Our CERO WASTE-Concept enables you to make the principle of closed-loop recycling a key business success factor.

Together with our customers we give our used products a new lease of life which then re-enters the supply and value chain. Waste never enters landfill, enabling you to use resources responsibly and increase security of supply.

Our concept complies with the European Waste Framework Directive, guaranteeing process and legal security in terms of analysis, transport, documentation and disposal of waste.

Scan QR-Code and learn more.

7

Basic raw materials

Mg0 55

Raw material base

Magnesia, magnesia-carbon and dolomite bricks

Slag forming agents, slag conditioners

MgO	CaO	Fe_2O_3	Al_2O_3	SiO ₂	С
55.0 %	20.0 %	5.0 %	10.0 %	5.0 %	8.0 %

Raw material base Magnesia-spinell

Application examples Aggregate for secondary metallurgy, mineralogical raw material

MgO	CaO	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂
82.0 %	1.5 %	0.7 %	8.0 %	0.5 %

Mg0 75

Raw material base

Magnesia and magnesia-carbon bricks

Application examples

Slag forming agents, slag conditioners, covering agents

Mg0 82 A7F6

Raw material base Magnesia

Application examples Aggregate for secondary metallurgy, mineralogical raw material

MgO	CaO	Fe_2O_3	Al_2O_3	SiO ₂	С
75.0 %	6.0 %	5.0 %	5.0 %	5.0 %	5.0 %

MgO	CaO	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂
82.0 %	2.0 %	5.5 %	6.5 %	1.3 %

Non-basic raw materials

TE 80

Raw material base

Application examples

High-alumina, bauxitic secondary raw materials

Slag fluxing agents, slag forming agents in secondary metallurgy

Al_2O_3	CaO	Fe_2O_3	MgO	SiO ₂	TiO ₂	С
78.0 %	2.0 %	2.5 %	3.0 %	11.0 %	2.0 %	2.0 %

TE 90

Raw material base

High-alumina secondary raw materials

Application examples

Slag fluxing agents, slag forming agents in secondary metallurgy

11 -

Al ₂ O ₃	CaO	Fe ₂ O ₃	MgO	SiO ₂	TiO ₂
90.0 %	2.5 %	0.8 %	2.5 %	1.8 %	0.1 %

TE 85

Raw material base

High-alumina secondary raw materials

Application examples

Slag fluxing agents, slag forming agents in secondary metallurgy

TE 60

Raw material base Alumina

Application examples Slag forming agent

Al ₂ O ₃	Fe ₂ 0 ₃	MgO	SiO ₂	TiO ₂	С
85.0 %	0.7 %	2.5 %	7.5 %	0.4 %	6.0 %

Al_2O_3	CaO	Fe ₂ 0 ₃	MgO	SiO ₂
60.0 %	2.0 %	2.0 %	5.0 %	28.0 %

Other raw materials

Rhecal A55M34S4

Raw material base Alumina-magnesia

Application examples Slag forming agent

Rhecal A68M20S4

Raw material base Assorted carbon-bonded bricks

Application examples Slag forming agent

С

6.0 %

Mg0	$\mathrm{Fe}_{2}\mathrm{O}_{3}$	AI_2O_3	SiO ₂	TiO ₂	$Cr_{2}O_{3}$	SO3	С	MgO	Fe_2O_3	Al_2O_3	SiO ₂	TiO ₂	CaO
35.0 %	2.0 %	56.0 %	4.0 %	0.6 %	0.5 %	0.06 %	6.0 %	20.0 %	4.0 %	68.0 %	4.0 %	2.0 %	2.0 %

Rhecal 10

Raw material base

Clay-dolomite-fluorspar mixture

Application examples

Slag forming agents, desulphurization agents

MgO	CaO	CaF_2	Fe ₂ O ₃	Al_2O_3	SiO ₂
6.0 %	15.0 %	10.0 %	2.0 %	55.0 %	9.0 %

CFA 40-60

Raw material base Pre-molten slag

Application examples Slag forming agent, refractory raw material

Rhecal A27

Raw material base Calciumaluminate

Application examples Raw material

AI_2O_3	CaO	CaF_2	Fe_2O_3	MgO	TiO ₂	SiO ₂
20.0 %	20.0 %	50.0 %	0.6 %	2.5 %	0.5 %	5.0 %

Al ₂ O ₃	CaO	Fe ₂ O ₃	MgO	SiO ₂
27.0 %	50.0 %	7.0 %	7.0 %	5.0 %

Rhecal A75

Raw material base Calcium-aluminate slags

Application examples

Slag fluxing agents

Al_2O_3	CaO	Fe ₂ 0 ₃	MgO	SiO ₂	Cr_2O_3
75.0 %	19.0 %	0.3 %	1.0 %	1.5 %	2.5 %

Customer Benefits

persons, close to production

towards the steel industry with a diverse range of services and process knowledge

